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Direct computation of the sound generated by
vortex pairing in an axisymmetric jet
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(Received 29 August 1997 and in revised form 14 October 1998)

The sound generated by vortex pairing in axisymmetric jets is determined by direct
solution of the compressible Navier–Stokes equations on a computational grid that
includes both the near field and a portion of the acoustic far field. At low Mach
number, the far-field sound has distinct angles of extinction in the range of 60◦–70◦
from the jet’s downstream axis which can be understood by analogy to axisymmetric,
compact quadrupoles. As the Mach number is increased, the far-field sound takes on a
superdirective character with the dominant sound directed at shallow angles to the jet’s
downstream axis. The directly computed sound is compared to predictions obtained
from Lighthill’s equation and the Kirchhoff surface method. These predictions are
in good agreement with the directly computed data. The Lighthill source terms have
a large spatial distribution in the axial direction necessitating the introduction of
a model to describe the source terms in the region downstream of the last vortex
pairing. The axial non-compactness of the quadrupole sources must be adequately
treated in the prediction method.

1. Introduction
The use of numerical tools for acoustic predictions, e.g. computational aeroacoustics

(CAA), typically relies on various assumptions beyond mere numerical issues. Primary
amongst these is the assumption that an aeroacoustic theory such as Lighthill’s
equation can yield accurate far-field predictions given detailed, but inexact, near-
field information. The performance of such predictive methods needs to be carefully
considered and validated in flows of interest. For example, it is important to recognize
the spatial non-compactness of the acoustic sources and careful consideration is
required to model flow–acoustic interaction effects.

In the present study, direct numerical simulations (DNS) are used to directly
compute the sound radiated by vortex pairing in the shear layers of axisymmetric
round jets. These calculations directly solve the compressible Navier–Stokes equations
on a computational domain that includes the near field and a portion of the far field.
This type of DNS provides a complete description of the flow field, i.e. both the
near-field acoustic source region and the radiated sound are captured in the same
computation.
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We compare the directly computed far-field sound (obtained without an aero-
acoustic theory) to predictions obtained with Lighthill’s equation (Lighthill 1952) and
the Kirchhoff surface method (Pierce 1989, p. 180; Lyrintzis 1994). Such comparisons
allow the quantitative accuracy and limitations of these approaches to be assessed.
A direct assessment is essential since predictions from theories such as Lighthill’s
equation rely on various assumptions that are not met in real jets. For instance,
a rigorous derivation of Lighthill’s equation using matched asymptotic expansions
(Crow 1970) requires the assumption of a low-Mach-number compact vortical flow.

While it must be recognized from the outset that the axisymmetric jets considered
in the present study differ from fully turbulent jets, it is nevertheless hoped that useful
physical insights can be garnered from the consideration of simpler, ‘building block’
flows and that learning how to predict the sound from the jets considered herein will
aid efforts to predict the sound from more complex flows. This belief is motivated by
the successful use of DNS of turbulence in canonical flows (Moin & Mahesh 1998)
to further the understanding of turbulence physics and to aid turbulence modelling.

Many previous investigators have considered the sound generated by vortex pairing
experimentally, see for instance Moore (1977), Kibens (1979), Laufer & Yen (1983),
and Bridges & Hussain (1992). Laufer & Yen observed that the far-field sound was
highly directive with a strong dependence on the angle from the jets axis. Crighton
& Huerre (1990) explained the Laufer & Yen results in terms of the phenomenon of
‘superdirectivity’ which they showed was a consequence of acoustical non-compactness
(see also Huerre & Crighton 1983). Bridges & Hussain, in sharp contrast to Laufer
& Yen, observed a striking directivity pattern that was similar to an axisymmetric
quadrupole.

In the present study, we consider the sound radiated by vortex pairing in axisym-
metric jets which exhaust into a quiescent, stationary medium. The jets considered
have a Reynolds based on initial centreline velocity, density, and jet radius, of
Re = ρ0U0R0/µ = 2500 with Mach numbers based on the ambient speed of sound
(Mj = U0/c∞) in the range 0.4 6 Mj 6 1.2. Depending on the initial shear layer
thickness, the shear layer of these jets rolls up into vortices which undergo either one
or two vortex pairings.

At higher speeds, we observed that vortex pairing does not take place and instead
the far-field sound is dominated by intense Mach wave radiation. Mach wave radiation
has been observed experimentally in excited jets, see for instance Troutt & McLaughlin
(1982). A companion study (Mitchell, Lele & Moin 1997) considers the Mach wave
radiation of a higher speed jet (Mj = 2) and specifically explores the prediction of
Mach wave radiation by different methods.

Our lowest Mach number jet has a directivity pattern similar to the Bridges &
Hussain experiment while our highest Mach number jet is superdirective. The directly
computed far-field sound is compared to predictions obtained by the solution of
Lighthill’s equation and with the use of Kirchhoff surfaces. Both prediction methods
depend on input from the computations. In the case of Lighthill’s equation, the
source terms have a large spatial extent that must be dealt with explicitly. Predictions
obtained from both methods are in good agreement with the directly computed data.

There are a number of numerical issues that must be carefully addressed in
order to perform computations of the sort reported in this paper. These issues
include the disparity of length and energy scales, the specification of accurate non-
reflecting boundary conditions, the specification of outflow boundary conditions to
allow vortical structures to leave the computational domain, and the need to preserve
the conservative, non-dispersive nature of the acoustic field. Some of these issues are
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Figure 1. Schematic of the computational domain. Note that the sketch is not to scale,
in particular Xmax ≈ 3Xp.

discussed by Crighton (1993). The disparity of length and energy scales is especially
acute for low-Mach-number jets. For the lowest speed jet we considered, a jet with a
centreline Mach number of 0.4, the acoustic wavelength of the dominant sound is 23
times larger than the jet radius and the acoustic pressure fluctuations at 40 jet radii
away from the jet are 10 000 times smaller than near-field pressure fluctuations.

The previous work of Colonius, Lele & Moin (1994), who directly computed
the sound scattered by a single vortex, and Mitchell, Lele & Moin (1995a), who
computed the sound radiated by co-rotating vortices, has clearly demonstrated that
our numerical schemes are capable of computing the sound generated by aerodynamic
motions. Furthermore, the recent computations of the sound radiated by a two-
dimensional mixing layer (Colonius, Lele & Moin 1995a, b; Colonius, Lele & Moin
1997) have demonstrated that our numerical schemes and boundary conditions may
be used to compute the sound radiated by free shear flows.

In § 2, we summarize the numerical procedure, and in § 3, our results are presented.
In § 4, the solution procedure for Lighthill’s equation is detailed and the predictions
of Lighthill’s equation are compared to the directly computed far-field sound. In § 5,
the application of a Kirchhoff surface for predicting far-field sound is discussed, and
predictions are compared to the directly computed sound. Conclusions are offered
in § 6.

2. Numerical method
A schematic of the computational domain is shown in figure 1; the computational

domain includes the region 0 6 x1 6 Xmax and 0 6 r 6 Rmax, where x1 is the axial
coordinate and r is the radial coordinate. Only the region 0 6 x1 6 Xp is considered
to contain physically meaningful data since the region Xp < x1 6 Xmax is an exit zone
constructed to allow large-scale vortices to exit the computational domain without
reflecting significant acoustic disturbances back into the region of interest. The inflow
boundary, x1 = 0, is considered to be located a short distance downstream of a
(hypothetical) nozzle. No attempt is made to model the effects of the nozzle and
flow delivery system on the near-field aerodynamics or the far-field sound; nozzle
scattering effects such as studied by Crighton (1972) are ignored.

The domain is discretized with a structured mesh containing Nx points in the
x1-direction and Nr points in the radial direction. In the axial direction, there are
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Nxp < Nx points in the physical part of the domain. The velocity in the axial direction
is u and velocity in the radial direction is vr .

The governing equations are the axisymmetric, compressible Navier–Stokes equa-
tions together with the ideal gas law, constant viscosity and thermal conductivity,
unity Prandtl number, Stokes hypothesis to eliminate the bulk viscosity, and ratio
of specific heats of 1.4. Time advancement is via the fourth-order-accurate Runge–
Kutta algorithm and spatial derivatives are evaluated using fourth-order-accurate
Padé schemes, see for instance Lele (1992). This combination of temporal and spatial
schemes has minimal dissipation and excellent dispersion properties and allows for
accurate propagation of acoustic waves. At the centreline, the coordinate singularity is
avoided by solving the Navier–Stokes equations in Cartesian coordinates (Thompson,
Warsi & Mastin 1985, p. 148) using eighth-order-accurate explicit finite differences to
evaluate spatial derivatives.

First-order boundary conditions due to Giles (1990) and discussed by Colonius,
Lele & Moin (1993) are posed on subsonic portions of inflow boundary and on the
top boundary. Zeroth-order boundary conditions are used on the supersonic portions
of the inflow boundary and on the entire outflow boundary. We found that the
damping terms required by Colonius et al. (1993) were not needed in the present
computations. Inside the exit zone, the grid is stretched significantly in the axial
direction and filtering is performed to attenuate the vorticity and to remove any
acoustic waves generated by the grid stretching, see Colonius et al. (1993) for more
details.

Initial conditions are specified using the solution of the parabolic boundary layer
starting with a hyperbolic tangent profile at x1 = −5R0. The boundary layer equations
are solved starting at x1 < 0 to ensure that spatial transients have decayed by x1 = 0.
The momentum thickness, defined as

δ2(x1) =

∫ ∞
0

(
u(x1, r)

u(x1, 0)

)(
1− u(x1, r)

u(x1, 0)

)
dr, (2.1)

of the hyperbolic tangent profile at x1 = −5R0 is specified such that the momentum
thickness at x1 = 0 has some desired value (δ2(0) = 0.1R0 or 0.05R0 in the current
study). In addition to the hyperbolic tangent velocity profile at x1 = −5R0, the Crocco–
Busemann relationship is used to establish the initial temperature profile given the
requirement that the centreline static temperature is the same as the ambient static
temperature, see Michalke (1984). Note that the profile at x1 = −5R0 is not isothermal
since the Crocco–Busemann relationship predicts a rise in static temperature in the
shear layer due to viscous heating effects.

In order to induce the roll-up and pairing of vortex rings, the flow at the inflow
boundary is perturbed in a time-periodic manner at the fundamental frequency and
its first few subharmonics where the fundamental frequency, f0, is defined as the
frequency at which disturbances acquire the largest spatial amplification rate for the
jet velocity profile at x1 = 0 as computed using inviscid, parallel flow linear stability
theory.

Because of the periodic inflow forcing and a lack of spectral broadening due to the
axisymmetry and low Reynolds number, the jet approaches a periodic state and it is
thus convenient to decompose the computational data into discrete frequencies using
Fourier transforms, e.g.

f(t) =
∑
n

f̂(ωn) e−iωnt. (2.2)
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Mj = 0.4 0.8 1.2 0.8
Parameter (thick) (thick) (thick) (thin)

δ2/R0 0.10 0.10 0.10 0.05
St0 0.22 0.21 0.18 0.34
Xp/R0 70 70 70 60
Rmax/R0 80 80 80 60
Nxp 1557 1557 1557 2668
Nr 292 415 492 652
∆x1/R0 0.045 0.045 0.045 0.0225
∆rmin/R0 0.030 0.030 0.030 0.015
∆rmax/R0 0.648 0.306 0.231 0.179

Table 1. Flow and grid parameters.

Use of Fourier decompositions also simplifies the solution of Lighthill’s equation and
the use of a Kirchhoff surface.

Further details on the numerical algorithm may be found in Mitchell, Lele & Moin
(1995b).

2.1. Flow and grid parameters

Using the numerical method described above, four cases were run on a Cray-YMP-
C90 supercomputer. The flow and grid parameters for these cases are summarized in
table 1. The primary difference is the Mach number, based on the centreline velocity
at x1 = 0 and the speed of sound in the ambient fluid (Mj = U0/c∞), and the initial
momentum thickness (δ2(x1 = 0)). All of the cases are excited at the fundamental
frequency (f0) and first few subharmonics. The Strouhal number of the fundamental
frequency is defined as St0 = f0R0/U0. All of the cases are for Re = ρ0U0R0/µ = 2500.
The jets exhaust into a stationary medium.

The first three cases are for δ2(x1 = 0) = 0.1R0 with different initial centreline
Mach numbers: Mj = 0.4, 0.8, and 1.2. The jets are excited at the fundamental
and first two subharmonic frequencies. In the radial direction, the number of grid
points is increased with increasing Mach number due to the decrease in the acoustic
wavelength, λ, which can be estimated by λ/R0 = 1/(MjSt). These cases will be
referred to by their Mach number, e.g. the ‘Mj = 0.4 jet’. Collectively, these cases will
also be referred to as the ‘thick shear layer jets’ to distinguish them from the fourth
case considered. The Mj = 1.2 supersonic jet is perfectly expanded in order to avoid
shock noise.

The fourth case is for δ2(x1 = 0) = 0.05R0, and Mj = 0.8. The jet is excited at the
fundamental and three subharmonic frequencies. This case will be referred to as the
‘thin shear layer, Mj = 0.8 jet’.

The radial grid spacing was chosen to place approximately 12 points per vorticity
thickness (approximately 4δ2 at x1 = 0) in the near field and approximately 10 points
per acoustic wavelength for acoustic waves at the 2f0 frequency. The region of grid
stretching is centred around r = 5R0 and the grid is stretched slowly. Tests with simple
sound sources verified that the propagation of acoustic waves was not affected by
the region of grid stretching. In the physical part of the axial grid, 0 < x1 < Xp, the
axial grid spacing is chosen to place approximately 9 points per vorticity thickness.
The exit zone is sized such that Xmax −Xp = 100R0 and Nx−Nxp = 400. The ratio of
minimum to maximum axial grid spacing in the exit zone is 50.
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Figure 2. Evolution of vorticity for the Mj = 0.4 jet showing equally spaced intervals in time
during one period of the second sub-harmonic frequency, i.e. time is increasing from plots
(a) to (h) with spacing ∆t = f0/4. The contour levels range from 0 to 2.8U0/R0 with incre-
ment 0.28U0/R0. The radial coordinate has been magnified by a factor of 2. Only half of the
streamwise extent of the computational domain is shown.

3. Results
The response of the jets to the inflow excitation is to roll up into discrete vortices

which subsequently pair. In the case of the thick shear layer jets, only a single
vortex pairing takes place, see for instance figure 2. The evolution for the other thick
shear layer jets is similar; however, the locations of the vortex roll-up and pairing
move further downstream as the Mach number is increased. The delay of the vortex
roll-up and pairing are in accordance with linear stability theory which shows that
the growth rates of disturbances decreases as the Mach number is increased, see for
instance Michalke (1984). The thin shear layer Mj = 0.8 jet undergoes two vortex
pairings, see figure 3. After the last vortex pairing, the resulting vortices convect
downstream at speed ≈ 0.64Mj for the thick shear layer jets, and speed ≈ 0.69Mj for
the thin shear layer jet; viscosity acts to reduce the peak level of vorticity.

The development of the momentum thickness is shown in figure 4. For all cases,
the momentum thickness is observed to have a step-like increase in the region of the
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Figure 3. Evolution of vorticity for the thin shear layer, Mj = 0.8 jet showing equally spaced
intervals in time during one period of the fourth subharmonic frequency, i.e. time is increasing
from plots (a) to (h) with spacing ∆t = f0/8. The contour levels range from 0 to 2.88U0/R0 with
increment 0.288U0/R0. The radial coordinate has been magnified by a factor of 2. Only half of the
streamwise extent of the computational domain is shown.

vortex pairings. For the thick shear layer jets, the start of the increase is delayed as
the Mach number is increased and the increase occurs more gradually. Unlike the
vortex pairing, the vortex roll-up does not have any discernible effect on the growth
of the momentum thickness. Experimental measurements of jets and mixing layers
also find a step-like increase in the momentum thickness in regions of vortex pairing,
see for instance Ho & Huang (1983) and Laufer & Zhang (1983).

Fourier transforms of near- and far-field flow quantities showed that the jets
approach a time-periodic state. In particular, it was found that both the near and
far fields are dominated by ‘even frequencies’ which are defined by (n/4)f0 for the
thick shear layer jets and (n/8)f0 for the thin shear layer jets, where n is even. These
frequencies represent combinations and multiples of the vortex roll-up and pairing
frequencies. (For the thin shear layer, Mj = 0.8 jet, there are persistent cycle-to-cycle
variations; however, we found that accurate Fourier transforms could be computed
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Figure 4. The axial growth of the momentum thickness for the jets: ,Mj = 0.4;
, Mj = 0.8; , Mj = 1.2; and , thin shear layer Mj = 0.8.

by averaging the results over a few periods of data, see Mitchell et al. 1995b for more
details.)

The growth of axial velocity disturbances at the frequencies which corresponds to
the vortex roll-up and pairing are shown in figure 5 for the thick shear layer jets. There
are several features to note. First, the largest disturbance is at the first subharmonic
frequency which saturates where the step-like increase in the momentum thickness is
complete. The correspondence of the saturation location and the completion of the
step-like increase was also observed by Ho & Huang (1982) who denoted the location
of saturation the ‘vortex-merging’ location. Second, disturbances at the fundamental
frequency are seen to saturate in the region of vortex roll-up, decrease, and then
to saturate, i.e. peak, again during vortex pairing. Multiple saturations have been
observed by other investigators, see for instance Colonius et al. (1995b) and Laufer &
Zhang (1983). Third, the saturation amplitude of the disturbances decreases slightly
as the Mach number is increased. The saturation location of the first subharmonic
frequency can be used to denote the ‘vortex-pairing’ location. This location is at
x1 = 15.7R0 for the Mj = 0.4 jet; x1 = 21.5R0 for the Mj = 0.8 jet; and x1 = 25.6R0

for the Mj = 1.2 jet.
Figure 6 shows the growth of disturbances for the thin shear layer, Mj = 0.8 jet.

Disturbances at the first and second subharmonic frequencies saturate where the step-
like increase in the momentum thickness is complete. Although their spatial evolution
is not shown, there are other frequencies present in the near field with disturbance
levels similar to, but generally smaller than, that of the fundamental frequency. For
instance, disturbances at the 3

4
f0 frequency saturate in the region of the second vortex

pairing with peak amplitude similar to the peak amplitude for disturbances at the
fundamental frequency. The vortex pairing locations, as measured by the saturation
locations of the first and second subharmonics, are at x1 = 9.6R0 and x1 = 18.0R0.

Note that disturbances at all frequencies decrease only slightly from their ‘satu-
ration levels’ before the outflow of the computational domain. This has important
implications for acoustic predictions via Lighthill’s equation, see § 4.1 for more details.

Figure 7 shows an instantaneous picture of the near-field vorticity and far-field
dilatation, Θ = ∇ · u. For all the jets, the dominant sound is generated in the regions
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Figure 5. Growth of axial velocity disturbances, û, at various frequencies for the jets
(a) Mj = 0.4, (b) Mj = 0.8, (c) Mj = 1.2 jets. The curves are for: , 1

2
f0; and , f0.

of the vortex pairing(s). As the Mach number is increased for the thick shear layer
jets, the sound becomes concentrated at shallow angles to the jet’s downstream axis.
Fourier transforms of the far field verified that only multiples and combinations of
the inflow forcing frequencies are present there; there is no observable Doppler shift
in frequency. Evidently the sound sources are stationary, a conclusion that was also
reached by Kibens (1979), Laufer & Yen (1983), and Bridges & Hussain (1992) in their
experiments with vortex pairing in low-Mach-number excited jets. These Fourier
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transforms also revealed that sound at the ‘odd frequencies’ was at least 20 dB less
than sound at the ‘even frequencies’.

In order to discuss the directivity of the far-field sound, we consider an observer
located on a sphere of radius x centred on the x1-axis at x1 = xs. Let θ be the
angle made by the observer location with the downstream x1-axis. The sound field
is axisymmetric about the x1-axis but depends on θ. The value of xs used for each
frequency and Mach number is tabulated in table 2 and represents an estimate of
the location of the apparent sound source which was obtained by examining two-
dimensional contour plots, similar to figure 7, of the sound at each frequency, see
Mitchell et al. (1995b). For frequencies at which there is more than one apparent
sound source, xs was estimated based on the dominant source.

With the exception of the second subharmonic frequency (f0/4) for the thick shear
layer jets which is observed to be dominated by the inflow forcing, the sound sources
are located in the region where the vortex pairing(s) takes place. For the thin shear
layer Mj = 0.8 jet which has two vortex pairings, sound at the first subharmonic
frequency appears to be radiated from the region of the first vortex pairing, and
sound at the second harmonic frequency appears to be radiated from the region of
the second vortex pairing. For frequencies which do not directly correspond to vortex
pairing events, there is no evident trend in the location of the sources other than the
fact that the sound is radiated from the region of the vortex pairings.

The directivity of the sound at individual frequencies for the thick shear layer
jets is shown in figure 8. The large values of the dilatation at very small angles are
caused by the placement of the observation point in the near field and should not
be interpreted as sound. Mitchell et al. (1995b) document that these fluctuations are
associated with the instabilities waves.

For the Mj = 0.4 jet, shown in figure 8(a), the dominant frequency of the radiated
sound is the first subharmonic frequency. This is not surprising since this is the
frequency of the vortex pairing and the frequency which contains the most energy in
the near field, see figure 5. We also note that several of the frequencies, including the
first subharmonic and fundamental frequencies, have an ‘angle of extinction’ or local
minimum in the sound level at around 60◦–70◦ from the downstream jet axis. Bridges
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Figure 7. Instantaneous near-field vorticity and far-field dilatation fields: (a) Mj = 0.4 jet,
(b) Mj = 0.8 jet, (c) Mj = 1.2 jet, and (d) thin shear layer Mj = 0.8 jet. The contours of the far-
field dilatation are: (a) min/max ±3× 10−6, incr. 3× 10−7; (b) min/max ±1× 10−4, incr. 1× 10−5;
(c) min/max ±1× 10−3, incr. 1× 10−4. and (d) min/max ±4× 10−4, incr. 4× 10−5. Shaded regions
denote negative dilatation. The arrow denotes the vortex pairing locations.

& Hussain (1992) measured the axisymmetric sound generated by vortex pairing in
a jet and observed an angle of extinction at 65◦. To the best of our knowledge, no
other experimental study has looked for the angle of extinction.

For the Mj = 0.4 jet, the acoustic wavelengths of the first subharmonic and
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Mj = 0.4 0.8 1.2 0.8
Frequency (thick) (thick) (thick) (thin)

1
4
f0 0 0 0 14

1
2
f0 11 19 17 7

3
4
f0 11

f0 17 19 17 7
5
4
f0 14

3
2
f0 19 19 18 9

7
4
f0 15

2f0 14 19 20 17

Table 2. Apparent source locations, xs/R0, for various frequencies. In cases where sound
appears to be generated from more than one location, only the dominant source location is
indicated.

fundamental frequencies are 22.7R0 and 11.4R0, respectively which is large compared
to the radius of the jet and we would anticipate that the sound sources are acoustically
compact. If this is the case, then the existence of the angle of extinction can be
understood by considering theoretical results for axisymmetric point quadrupoles,

∇2
(y)p̂+

(
ω

c∞

)2

p̂ =
∂2

∂yi ∂yj
[Q̂ijδ(y)], (3.1)

where p̂ is the temporal Fourier transform of the far-field pressure. The sound from
this source contains contributions from two terms (Morse & Ingard 1968, p. 347):
(i) a quadrupole term with uniform directivity proportional to the trace of Q̂ij and
(ii) a quadrupole term that is multiplied by the spherical harmonic, Y2(θ),

Y2(θ) = 1
4

(3 cos (2θ) + 1) . (3.2)

If Q̂ij is trace free then the first term is zero and the axisymmetric quadrupole has an
angle of extinction at 55◦. Bridges & Hussain argued based on Möhring’s equation
(Möhring 1978) that the first term is zero and sought to explain why their experimen-
tally measured angle of extinction was different from 55◦. However, the source tensor
in Lighthill’s equation is not trace free and the influence of the first term is seen where
the contribution of the other term is small, i.e. near θ = 55◦; its primary effect is to shift
the observed angle of extinction. Thus angles of extinction are not expected to be
exactly at 55◦.

Returning to figure 8, we observe that as the Mach number is increased the first
subharmonic frequency remains the dominant frequency of far-field sound. However,
the directivity of the first subharmonic becomes increasingly dependent on the angle
θ with the peak sound concentrating towards shallower angles with the downstream
jet axis. This trend towards strong dependence on θ is not limited to the first
subharmonic and is present for all the frequencies shown in figure 8. Recognizing
that as the Mach number is increased, the acoustic wavelengths decrease and the
sound sources become non-compact, we explain this trend by reference to the work
of Crighton & Huerre (1990) who demonstrated that non-compactness in the axial
direction leads to the possibility of superdirective sound sources, i.e. sound sources
with a preferred directivity at shallow angles to the jet axis and an exponential
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Figure 8. The magnitude of the Fourier transform of the far-field dilatation for various frequencies
at a distance of x = 40R0 from the apparent source location, xs, measured versus angle with the
downstream axis for the jets (a) Mj = 0.4, (b) Mj = 0.8, and (c) Mj = 1.2. The curves are for:
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dependence on cos(θ). We have verified for the Mj = 1.2 jet that the far-field sound
has an exponential dependence on cos(θ) at low angles – in fact, the directivity is well
approximated by e6 cos(θ) for θ < 70◦. Laufer & Yen (1983) observed superdirective
sources in their low-Mach-number jet noise experiments.

Crighton & Huerre (1990) modelled the source region as a sinusoidal carrier wave
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modulated by a Gaussian envelope function. In the present case, the sound sources
are better modelled by a carrier wave that is modulated by an exponential growth
followed by a gradual decay, see figures 5, 10 and 11. As the Mach number is
increased, the spatial frequency of the carrier wave is nearly unchanged, and the
vortices which form are observed to convect at a fixed fraction of the initial centreline
velocity independent of Mj . The modulating function is also only slightly modified.
However as the Mach number is increased, the acoustic wavelength is reduced and,
as a result, the acoustic source region becomes less compact and the trend towards
superdirective sound is not surprising. Examination of a model problem based on
the sources observed in this study also showed this trend towards superdirectivity.
We stress that the key feature is the reduction in the acoustic wavelength implied by
the increased Mach number and not the effect of the increased Mach number on the
near-field flow structure.

Examination of two-dimensional contour plots for the Mj = 1.2 jet revealed that
for all the frequencies considered, the sound in the relatively quiet portion of the far
field, i.e. θ > 90◦, was being radiated from a second sound source located downstream
of the vortex pairing in the region 40R0 < x1 < 50R0. Also, examination of the
fundamental frequency of the Mj = 0.8 jet shows evidence of a weak second sound
source that is either due to the inflow forcing or perhaps due to the vortex roll-up.
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These secondary sound sources help explain the oscillations shown in figure 8 for
large θ. See Mitchell et al. (1995b) for more details. Similarly, it was observed that
the sound at 2f0 for the Mj = 0.4 jet is contaminated by weak reflections from the
exit zone. These reflections are evidenced by the oscillations present in figure 8(a).
This was the only case for which we observed reflections from the exit zone.

The directivity of the sound at individual frequencies for the thin shear layer
Mj = 0.8 jet is shown in figure 9. The far-field directivity is quite complicated, for
instance at the 3

2
f0 frequency, there are six local minima. Overall, the sound levels

are roughly an order of magnitude larger than were found in the thick shear layer,
Mj = 0.8 jet, see figure 8(b). Our estimates for the location of the primary sound
sources for the thin shear layer jet are in the range of 7R0–17R0, see table 2. Except
for the first and second subharmonic frequencies, sound appears to be generated from
the region of both vortex pairings; however, the primary source location is typically
in the region of the first vortex pairing. Different regions of the far field seem to
contain sound that was radiated from the different sources. For example we observed
that at the 3

2
f0 frequency, sound at small θ appears to come from the region of the

second vortex pairing, the sound at higher angles appears to come from the first
vortex pairing, and the sound at θ > 90◦ comes from the region of the second vortex
pairing. The existence of two source locations, from which sound can destructively
interfere, coupled with the expected quadrupole behaviour of each source gives rise
to the multiple peaks and minima in the directivity. See Mitchell et al. (1995b) for
more details on the source locations.

Finally, we note that although linear stability theory shows that, for very low
frequencies, instabilities waves with supersonic phase velocities are possible for the
Mj = 1.2 jet, we did not observe the intense Mach waves associated with such
instability waves, see for instance Tam & Hu (1989). Mitchell et al. (1995b, 1997)
present computational results for a Mj = 2 jet where Mach wave radiation dominates
the far field.

4. Lighthill’s equation
Lighthill (1952) rearranged the exact continuity and momentum equations to derive

what has become known as Lighthill’s equation:

∂2ρ′

∂t2
− c2

∞∇2
(y)ρ

′ =
∂2

∂yi ∂yj
Tij(y; t). (4.1)

The Lighthill stress tensor, Tij , is given by

Tij = ρuiuj + (p′ − c2
∞ρ
′)δij − τij , (4.2)

where τij is the viscous stress, and the prime superscript denotes a fluctuating quantity,
e.g. ρ′ = ρ − ρ∞. As expressed, equation (4.1) is an exact, single equation involving
five flow variables. Approximation is introduced when the left-hand side is inverted to
solve for ρ′ in terms of an independently specified right-hand side. When used in this
manner, Lighthill’s equation provides a prediction for ρ′ based on prescribed Tij(y; t)
(which we approximate as Tij = ρuiuj +

(
p′ − c2∞ρ′

)
δij).

It is the goal of this section to explore the ability of Lighthill’s equation to predict
the computations of sound radiated by the jet presented in § 3. Before discussing the
solution of Lighthill’s equation in § 4.2, we discuss the problem of extensive source
terms in § 4.1. Predictions obtained using source terms computed from the simulations
are compared to the directly computed data in § 4.3.
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0 ), integrated in the radial direction at the first subharmonic frequency for the jets: ,
Mj = 0.4; , Mj = 0.8; , Mj = 1.2 and , thin shear layer Mj = 0.8.

Before proceeding, a notational issue needs to be addressed. When dealing with
Green’s function solutions of the wave equation, such as considered both here and
in § 5, a distinction needs to be made between source and observer coordinates. The
observer coordinates will be denoted by x and have cylindrical coordinate components
(x1, r). The source coordinates will be denoted by y with cylindrical components
(y1, σ, φ). Since we consider only axisymmetric acoustic fields, the azimuthal angle of
the observer coordinate system has been suppressed.

4.1. Extensive source region

Before discussing the solution of Lighthill’s equation, a problematic feature of the
Lighthill source terms needs to be considered. This feature is illustrated in figure
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10, which shows the real and imaginary parts of the Fourier transform of ρuu at
the fundamental frequency for the Mj = 0.4 jet, and in figure 11, showing the axial
development of the magnitude of the radial integral of ρuu at the first subharmonic
frequency for each jet. Evident in these plots is the fact that the source terms decay
quite slowly after the vortex pairing(s) and are still significant at the exit of the
computational domain. Mankbadi, Hayer & Povinelli (1994) also observed extensive
Lighthill sources in their simulation of the near field of a supersonic jet. Note that at
the inflow, the source terms are quite small (at least two orders of magnitude smaller
than their peak values). The slow decay of the source terms is an artifact of the
axisymmetric jets considered here and we do not expect the decay to be so slow when
considering turbulent jets.

Because the source terms are still large at the exit of the computational domain,
predictions of Lighthill’s equation will contain spurious sound waves generated by
the sudden termination of the source terms at x1 = Xp. We avoid this problem by
observing that downstream of the vortex pairing, say for x1 > xm, the source terms
can be approximated by

T̂ ij(x1, r;ω) = f̂ij(r;ω) eik0(x1−xm) (4.3)

where k0 is a complex wavenumber with positive imaginary part. Thus the source field
is broken into two regions. For 0 6 x1 < xm (the active region), Tij is evaluated from
the simulation and for x1 > xm (the passive region), Tij is evaluated using equation

(4.3) where f̂ij and k0 are evaluated from the simulation data at x1 = xm.
The accuracy of our model for Tij , (4.3), is checked in figure 12 where the axial

variation of k0 for the Mj = 0.8 jet is shown. The wavenumber, k0, was computed via

k0(x1, r) = −i
∂ρ̂uu/∂x1

ρ̂uu
. (4.4)

We observed that sufficiently far downstream of the inflow, the real part of k0 becomes
only a weak function of x1. Although not shown, k0 is virtually independent of r.
Note that the independence of k0 from x1 degrades with increasing frequency; this is
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especially true for the higher frequencies of the Mj = 1.2 jet and the thin shear layer
Mj = 0.8 jet. The imaginary part of k0 does not, in general, become independent of
x1 and r. Fortunately, the imaginary part of k0 is much smaller than the real part of
k0, and the overall solution is not very sensitive to its value.

The wavenumber computation, (4.4), is based on the ρuu component since this is the
largest. Computations of k0 using other components of the source term gave nearly
identical results for the real part of k0 (in the region downstream of the vortex pairing).
The imaginary part of k0 is more dependent on the component chosen; however as
noted earlier, the solution is not very sensitive to the value of the imaginary part.

The location where the model was applied, x1 = xm, was chosen to be as upstream
as possible (but downstream of the vortex pairing) consistent with the requirement
that the real part of k0 become as independent of x1 as possible. For the case shown
in figure 12, the values of xm used were 35R0 for the fundamental frequency, 40R0 for
the first subharmonic frequency, and 45R0 for the 3

2
f0 and 2f0 frequencies.

While the axial extent of the sources is large, the radial extent is small; the source
terms are only significant where the vorticity is non-zero, say r < 3R0. This observation
was anticipated by the acoustic theories of Powell (1964), Howe (1975), and Möhring
(1978) who showed that the acoustic source terms could be expressed in terms of the
vorticity.

4.2. Solution method

Our solution method borrows ideas from Ffowcs Williams & Kempton (1978),
Mankbadi & Liu (1984) and Mankbadi (1990). Mankbadi & Liu (1984) and
Mankbadi (1990) solved Lighthill’s equation to determine the sound generated by
rapidly growing and decaying instability waves. Their solution method made no
assumption about acoustical compactness in the axial direction and assumed slight
acoustical non-compactness in the radial direction. Ffowcs Williams & Kempton
(1978) considered the sound generated by a non-decaying, convecting source. They
assumed that the source was acoustically compact. We will consider the source to be
non-compact. See also the recent discussion of the numerical solution of Lighthill’s
equation in Bastin, Lafon & Candel (1997).

4.2.1. Solution in the active region

Our starting point is the temporal Fourier transform of Lighthill’s equation:

∇2
(y)ρ̂+

(
ω

c∞

)2

ρ̂ = − 1

c2∞

∂2

∂yi ∂yj
T̂ ij(y), (4.5)

which has a solution in terms of its Green’s function,

ρ̂(x) =
1

c2∞

∫
V

∂2T̂ ij(y)

∂yi ∂yj

eiωR/c∞

4πR
dy (4.6)

where R = x − y, R = |R| and V is the volume of space over which the sources are
non-zero. Using integration by parts and the divergence theorem, the derivatives are

transferred from the source, T̂ ij , to the Green’s function

ρ̂(x) =
1

c2∞

∫
V

T̂ ij(y)
∂2

∂xi ∂xj

(
eiωR/c∞

4πR

)
dy, (4.7)
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where we have used the identity ∂R/∂yi = −∂R/∂xi. Evaluating the derivatives yields

ρ̂(x) = −ω
2

c4∞

∫
V

RiRj

R2
T̂ ij

eiωR/c∞

4πR
dy + O

(
λ

2πR

)
(4.8)

where our notation means that the neglected terms are a factor of O
(
λ/(2πR)

)
times

smaller than the retained terms and where λ = 2πc∞/ω is the wavelength of the sound
waves. In cylindrical coordinates, this is

ρ̂(x) = −ω
2

c4∞

∫ ∞
−∞

∫ ∞
0

∫ 2π

0

σRiRjT̂ ij

eiωR/c∞

4πR3
dφ dσ dy1 (4.9)

where x1 and r are the cylindrical coordinate components of x and y1, σ, and φ are
the components of y, and where

R2 = (x1 − y1)
2 + r2 + σ2 − 2rσ cos (φ). (4.10)

Our next step is to transform the source tensor, T̂ ij , from Cartesian to cylindrical co-
ordinates by recognizing that RiRjρuiuj = ρ(R · u)2 which leads to

RiRj

ξ2
T̂ ij(y) =

2∑
j=0

Aj(x, y) cosj(φ) + O
( σ
R

)
, (4.11)

where

A0 = cos2(θ) ρ̂uu+ (p̂− c2∞ρ̂),
A1 = 2 cos (θ) sin (θ) ρ̂uvr,

A2 = sin2(θ) ρ̂vrvr,

 (4.12)

and where ξ = R2
1 + r2, cos (θ) = R1/ξ, and sin (θ) = r/ξ. Recall that R1 = x1 − y1.

Thus, the solution becomes

ρ̂(x) = −ω
2

c4∞

∫ ∞
−∞

∫ ∞
0

σ

2∑
j=0

Aj(x, y) ĝj(x, y) dσ dy1, (4.13)

where the ‘Green’s function’, ĝj , is given by

ĝj(x, y) = ξ2

∫ 2π

0

cosj(φ)
eiωR/c∞

4πR3
dφ. (4.14)

The trigonometric functions of θ in Aj should be viewed as part of the Green’s
function. For low frequencies, it is possible to develop a series expansion for ĝj;
however, this expansion is not convergent at higher frequencies. Thus we evaluated ĝj
using numerical integration of equation (4.14) via the trapezoidal rule using between
8 and 32 points depending on the frequency.

Since the solution to Lighthill’s equation, (4.13), is a convolution integral, it is
computationally expensive to evaluate. There are two ways to proceed. First, we
could expand equation (4.13) in a multipole expansion (Goldstein 1976, § 1.5.2) about
y1 = σ = 0. We explored this approach; however numerical difficulties associated with
computing the higher order moment integrals (that arise for acoustically non-compact
sources) prevented us from obtaining accurate far-field predictions. In addition, a
multipole approach requires the source location as input.

The second approach, and the approach used for the results presented herein, is to
approximate equation (4.13) by subdividing the integration domain into rectangular
regions of size ∆y1 × ∆σ. In each small region, the Green’s function and functions of



132 B. E. Mitchell, S. K. Lele and P. Moin

θ in Aj are evaluated by assuming that y is fixed at the centroid of the region. The
results from each subdivision are then summed to obtain the far-field prediction. The
size of the subdivisions is chosen to ensure that the regions are acoustically compact
as measured by the axial and radial Helmholtz numbers, ω∆y1/c∞ and ω∆σ/c∞. Our
value for the Helmholtz number is discussed at the end of the next section.

The (infinite) upper limit on the radial integral is taken as 3R0 and the limits on
the axial integral are taken to include only the active region, i.e. 0 6 y1 6 xm. The
axial integral in the passive region, xm < y1 6 ∞, is the topic of the next section.

4.2.2. Solution in the passive region

In the passive region, we substitute (4.3) into (4.9) to find

ρ̂(x) = −ω
2

c4∞

∫ ∞
0

σT̂ ij

∫ 2π

0

∫ ∞
0

eik0y1

[
RiRj eiωR/c∞

4πR3

]
dy1 dφ dσ, (4.15)

where T̂ ij is a function only of σ and where, without loss of generality, xm is taken as
xm = 0. Expanding the bracketed term as a Taylor series about y1 = 0 and neglecting
terms that are small in the far field:

ρ̂(x) = −ω
2

c4∞

∫ ∞
0

σT̂ ij

∫ 2π

0

∞∑
n=0

[(
ωx1

ηc∞

)n ∫ ∞
0

(−iy1)
n

n!
eik0y1dy1

]
×ηiηj eiωη/c∞

4πη3
dφ dσ + O

(
λ

2πη

)
(4.16)

where η is R evaluated at y1 = 0. The y1 integral is Euler’s integral (see Abramowitz
& Stegun 1964, equation 6.1.1) and can be evaluated analytically to yield

ρ̂(x) = −ω
2

c4∞

∫ ∞
0

σT̂ ij

∫ 2π

0

i

k0

∞∑
n=0

(
Mkx1/η

)n ηiηj eiωη/c∞

4πη3
dφ dσ (4.17)

where

Mk =
ω

c∞k0

. (4.18)

The summation can be expressed in closed form:

ρ̂(x) = −ω
2

c4∞

∫ ∞
0

σT̂ ij

∫ 2π

0

i/k0

1−Mkx1/η

ηiηj eiωη/c∞

4πη3
dφ dσ (4.19)

assuming that |Mk cos (θ)| < 1. Finally, the source tensor is converted from Cartesian
to cylindrical coordinates:

ρ̂(x) = −ω
2

c4∞

2∑
j=0

∫ ∞
0

σAjg̃j(x, y) dσ + O

(
σ

η

)
(4.20)

where

g̃j(x, y) =
iξ2

k0

∫ 2π

0

eiωη/c∞

4πη3(1−Mkx1/η)
dφ. (4.21)

In a manner similar to the discussion after equation (4.14), equation (4.20) is solved
by subdividing the radial domain into small, acoustically compact regions of size
∆σ; the upper limit of the radial integral was taken as 3R0. In both the active and
passive regions, the radial Helmholtz number, ω∆r/c∞, was taken as 0.1. The axial
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Helmholtz number, ω∆y1/c∞, needed only in the active region, was taken as 0.05;
the lower value of the axial Helmholtz number was required in order to match the
exact axial integration performed in the passive region. The contributions from all
the small regions in both the active and passive region are combined to determine
the complete far-field prediction.

In order to compare the Lighthill predictions to the direct computations, the
far-field density fluctuations are converted to dilatation fluctuations via

Θ̂ =
iω

ρ∞
ρ̂. (4.22)

4.3. Comparison to DNS

Predictions obtained using Lighthill’s equation are shown in figure 13 for the thick
shear layer jets at various frequencies. With the exception of the 2f0 frequency, the
predictions are in good agreement with the directly computed data. It is interesting
to note that although Lighthill’s equation qualitatively predicts most of the observed
angles of extinction, there are some minor quantitative differences. For instance at
the fundamental frequency of the Mj = 0.4 jet, Lighthill’s equation predicts the angle
of extinction at 68◦ compared to the actual location at 72◦. Since the angles of
extinction are quiet regions of the far field that result from destructive interference,
it not surprising that this is a difficult feature of the far field for the prediction to
capture accurately.

Note that these predictions were obtained for large x (x = 70R0) in order to ensure
the validity of various approximations made in § 4.2. For example, the worst case for
the approximation in (4.8) occurs for the first subharmonic frequency of the Mj = 0.4
jet where we estimate that the error term, λ/(2πx), yields a 5% error. Although
Lighthill’s equation can be solved for any value of x and θ, the directly computed
data are only available for a finite region of space. Thus, as a result of the large
value of x, figure 13 does not include shallow angles. We also made comparisons
(not shown) of Lighthill’s equation at x = 40R0. These comparisons verified that
predictions at shallower angles to the jet axis are also in good agreement with the
computational data.

Lighthill predictions for the thin shear layer, Mj = 0.8 jet are shown in figure 14.
The results are similar to the thick shear layer jets. In particular, good agreement
is seen at lower frequencies; however the accuracy is not as good for the higher
frequencies. Recall from § 4.1 that the model used for the extensive source region is
not as accurate a description of the source terms at higher frequency. By examining
the sensitivity of the Lighthill predictions to xm, we were able to show that the
discrepancies at higher frequencies (for all the jets) are due to the model.

Despite its relatively poorer performance at high frequency, it is essential to include
a model for the passive region of the source. Predictions obtained by truncating the
source data at x1 = Xp typically over-predicted the far-field sound by an order of
magnitude, see figure 15 for an example. Mitchell et al. (1995b) demonstrate that it is
essential to include the effects of axial source non-compactness when calculating the
Lighthill predictions.

In summary, predictions obtained using Lighthill’s equation are in good agreement
with the directly computed results and the inclusion of a model for the extensive
spatial distribution of the Lighthill stress tensor is essential. Most of the discrepancies
are at higher frequencies and can be attributed to the fact that the accuracy of the
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Figure 13. Comparison of the directly computed sound (lines) to predictions obtained using
Lighthill’s equation (symbols). The plots are for the jets: (a, b) Mj = 0.4; (c, d) Mj = 0.8; and
(e, f) Mj = 1.2. Shown is the magnitude of the Fourier transform of the dilatation at a distance of

x = 70R0 from the apparent source location, xs. In (a, c, e) the curves are for 1
2
f0 ( , •); and

f0( , +). In plots (b, d, f) the curves are for 3
2
f0 ( , ×); and 2f0 ( , �).

model introduced to handle the extensive spatial distribution of the source terms
decreases with increasing frequency.

5. Kirchhoff surface method
5.1. Formulation

The Kirchhoff surface method of predicting sound is based on an analytical formula
that relates the sound to integrals over a closed surface that surrounds all acoustic
sources. Kirchhoff’s formula, which forms the basis of the technique, has been known
for some time, see Kirchhoff (1883). Lyrintzis (1994) reviews recent aeroacoustic
applications, see also Brentner & Farassat (1997).
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jet to predictions obtained using Lighthill’s equation (symbols) at various frequencies. Shown is the
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Our starting point is the Kirchhoff–Helmholtz equation which relates the temporal
Fourier transform of an acoustic variable, say ϕ̂, to surface integrals of ϕ̂ and its
derivative normal to the surface:

ϕ̂(x;ω) =

∫
S

[
∂ϕ̂(y)

∂n(y)
Ĝ(x, y)− ϕ̂∂Ĝ

∂n

]
dS(y), (5.1)

where n is the outward pointing normal on the surface S (the ‘Kirchhoff surface’), and
Ĝ is the Green’s function of the Helmholtz or reduced wave equation. The Kirchhoff–
Helmholtz equation can be developed using vector calculus (Pierce 1989, § 4–6) or
generalized functions, see Farassat (1977) and Farassat & Myers (1988). If x is inside
S , then (5.1) evaluates to ϕ̂ = 0. The form of the Kirchhoff–Helmholtz equation given
in (5.1) is appropriate for a stationary surface. If the mean velocity is non-zero in
the far field, then a Kirchhoff–Helmholtz equation for a moving surface should be
used, see Ffowcs Williams & Hawkings (1969), Farassat & Myers (1988) and Myers
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Figure 15. Comparison of predictions obtained from the solution of Lighthill’s equation with and
without a model for the slow decay of the source terms. The predictions are for first subharmonic
frequency of the Mj = 0.8 jet at a distance of x = 70R0 from the apparent source location, xs. The
curves are for: DNS data ( ); Lighthill prediction including model for passive region (•); and
Lighthill prediction with no model for the passive region (×).

& Hausmann (1990) for details. For a jet, the logical choice of S is an open-ended
cylinder of radius Rs. For such a surface when ϕ̂(y) is independent of the azimuthal
direction (as for the present case of axisymmetric jets), the Kirchhoff–Helmholtz
equation reduces to

ϕ̂(

x︷︸︸︷
x1, r;ω) = Rs

∫ ∞
−∞

∂ϕ̂(

y︷ ︸︸ ︷
y1, Rs)

∂r
ĝ − ϕ̂∂ĝ

∂r

 dy1, (5.2)

where ĝ(x1, r, y1, Rs) is computed via

ĝ(x1, r, y1, Rs) =

∫ 2π

0

−eiωR/c∞

4πR
dφ, (5.3)

and where, R2 = (x1 − y1)
2 + r2 + R2

s − 2Rsr cos (φ). Note that it is possible to show
that

ĝ(x1, r, y1, Rs) ≈ −J0

(
ωRs

c∞
r

ξ

)
eiωξ/c∞

2ξ
(5.4)

where ξ2 = (x1 − y1)
2 + r2 and where J0(x) is the zeroth-order Bessel function of the

first kind provided that x� y. However, since we did not want to restrict our results
to x� y, we evaluated ĝ using numerical evaluation of (5.3).

The use of a Kirchhoff surface as a tool to calculate the far-field sound proceeds
by specifying the values of ϕ̂ on the surface S using computational data. Then the
integral in (5.2) is evaluated using numerical quadrature to find ϕ̂ outside the surface.
The infinite limits on the integral are replaced with the range 0 6 y1 6 Xp.

The errors introduced by truncating the integral have been analysed recently by
Freund, Lele & Moin (1997) who developed a geometric criterion that determines
when the truncation of the Kirchhoff surface will not lead to significant error. They
suggest that if a line between the far-field observer and the apparent sound source
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Figure 16. The difference between the time rate of change of the flow variables as computed using
the Navier–Stokes equations and the linearized Euler equations: , Mj = 0.4; , Mj = 0.8;

, Mj = 1.2; and , thin shear layer, Mj = 0.8.

intersects the Kirchhoff surface in the region included in the integration, 0 6 x1 6 Xp,
then errors from truncating the integral will be small. If, however, the vector intersects
the Kirchhoff surface in a region where the data are not included in the integration,
then errors will dominate the solution. In order to reduce the volume of the far field
where errors would be expected to dominate, the radius of the Kirchhoff surface
should be small and the length of the surface should be as large as possible.

Three issues remain:
(i) Is the mean velocity in the far field small enough to justify the use of the

Kirchhoff–Helmholtz formula? The mean velocity in the far field is due to entrainment
and we found that the Mach number of the entrainment flow is less than 0.005 for
r > 5R0. Thus the mean flow may be neglected and use of the Kirchhoff–Helmholtz
equation is justified.

(ii) How should the location of the Kirchhoff surface, Rs, be chosen? The value of
Rs must be sufficiently large that the Navier–Stokes equations reduce to the linearized
Euler equations at S but, as just noted above, should be small to minimize errors
associated with truncating the infinite integrals. In § 5.2 we will choose Rs by directly
comparing the Navier–Stokes and linearized Euler equations.

(iii) What acoustic variables should be used for ϕ̂? Previous applications of the
Kirchhoff surface method have used the pressure as the acoustic variable in (5.2),
see for instance Lyrintzis & Mankbadi (1995). However, we use the fluid dilatation,
Θ = ∇ · u. Note that dilatation is directly related to the far-field pressure via

Θ = − 1

ρ∞c2∞

∂p

∂t
. (5.5)

5.2. Comparison to DNS

Before comparing the far-field sound predicted using a Kirchhoff surface to the
directly computed results, we must choose the radius of the Kirchhoff surface. First,
we compare the time rate of change of the flow variables computed using the Navier–
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Figure 17. Comparison of the directly computed sound to predictions obtained from Kirchhoff
surfaces located at different distances from the centreline for the Mj = 0.4 jet at the first subharmonic
frequency. Shown is the magnitude of the Fourier transform of the dilatation at a distance of
x = 40R0 from the apparent source locations, xs: , DNS; Kirchhoff surface at •, Rs = 3R0;
�, Rs = 5R0; , Rs = 7R0; ×, , Rs = 10R0; and +, Rs = 15R0.

Stokes and linearized Euler equations, i.e. we consider the quantity L defined via

L2(r) =

∫ Xp

0

|vNS − vEuler|2 dx1

/∫ Xp

0

|vNS|2 dx1 (5.6)

where v = (u̇/c∞, v̇r/c∞, ρ̇/ρ∞)T and subscripts denote the Navier–Stokes and lin-
earized Euler equations. Figure 16 shows L for the different jets. It is seen that
the Navier–Stokes equations rapidly approach the linearized Euler equations until
r ≈ 10R0. It is believed that the slow decay for r > 10R0 is caused by the slow
decay of the entrainment flow, i.e. the actual mean flow slowly approaches the zero
mean flow assumed for the linearized Euler equations. Comparisons of the Euler and
linearized Euler equations demonstrated that the slow decay for r > 10R0 is not due
to the viscous terms.

In order to determine if the surface can be located closer than 10R0, we compare
predictions using Rs in the range 3R0 6 Rs 6 15R0 to the directly computed sound.
This is shown in figure 17 for the subharmonic frequency of the Mj = 0.4 jet. The
comparison shows that Rs = 10R0 is an appropriate location for the Kirchhoff surface.
Comparisons at other Mach numbers and frequencies reached the same conclusion.
At higher frequencies, we observed that the surface may be located closer to the
centreline, for instance the surface may be located as close as Rs = 5R0 for the 2f0

frequency of the Mj = 0.4 jet.
Predictions obtained using the Kirchhoff surface method are compared to the

directly computed data in figures 18 and 19. The predictions are in excellent agreement
with the directly computed results.

In the calculations discussed in this study, the computational domain extends
several acoustic wavelengths into the far field and contamination of the flow at the
Kirchhoff surface by the numerical boundary conditions is not significant. If the
computational boundary was located in the same region of the flow as the Kirchhoff
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Figure 18. Comparison of the directly computed sound (lines) to predictions obtained using
Kirchhoff surfaces (symbols) located at Rs = 10R0. The plots are for the jets: (a) Mj = 0.4;
(b) Mj = 0.8; and (c) Mj = 1.2. Shown is the magnitude of the Fourier transform of the dilatation

at a distance of x = 70R0 from the apparent source location, xs:
1
2
f0 ( , •); f0 ( , +);

3
2
f0 ( , ×); and 2f0 ( , �).

surface, as might well occur in practice, there is the possibility that the data on the
Kirchhoff surface will be affected by the boundary conditions. This is an important
issue that warrants further investigation to assess the proper location of the Kirchhoff
surface and top boundary.
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Figure 19. As figure 18 but for the thin shear layer Mj = 0.8 jet. Shown is the magnitude of the
Fourier transform of the dilatation at a distance of x = 40R0 from the apparent source location, xs.
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6. Conclusions
The sound generated by vortex pairing in axisymmetric jets has been directly

computed by numerical solution of the compressible Navier–Stokes equations on a
computational domain that includes both the near and far fields. Direct computations
of four jets were presented. The far-field sound from the lowest Mach number jet
(Mj = 0.4) resembles the sound from axisymmetric point quadrupoles similar to the
experiments of Bridges & Hussain (1992) while the sound from the highest speed jet
(Mj = 1.2) is superdirective in the sense of Crighton & Huerre (1990).

The directly computed far-field sound was compared to predictions obtained by
solving Lighthill’s equation where the Lighthill stress tensor was evaluated using
the simulation data. The large spatial extent of the Lighthill stress tensor necessi-
tated the introduction of a model to describe its behaviour in the region down-
stream of the outflow boundary. Overall, the Lighthill predictions are in good
agreement with the directly computed data and we demonstrated that the in-
clusion of a model for the downstream behaviour of the Lighthill stress tensor
is essential. We caution that it is imperative not to assume acoustical compact-
ness when solving Lighthill’s equation. As partial proof of this statement, we re-
call that the phenomenon of superdirectivity (observed in the Mj = 1.2 jet) is
directly the result of acoustical non-compactness and cannot be properly predicted
unless acoustical non-compactness is accounted for in the solution of Lighthill’s
equation.

It must be noted that the smallest acoustic wavelength presented in this paper
was 2.4R0 (corresponding to the 2f0 frequency of the Mj = 1.2 jet). As such, the
acoustic waves in this study propagated a distance through the non-zero mean flow
that was short compared to the acoustic wavelength and thus modification of the
sound (level and/or directivity) by the mean flow was not anticipated. For higher
frequency sound waves (and thus shorter wavelengths), modification of the sound
waves by the mean flow, e.g. refraction and scattering, is anticipated and it is likely
the predictions from Lighthill’s equation would not be as good. In such situations,
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the use of higher order wave equations, e.g. Lilley’s equation (Goldstein 1976, chapter
6; Colonius et al. 1997), may be necessary.

The directly computed data were also compared to predictions obtained using the
Kirchhoff surface method. We presented a technique based on comparison of the
Navier–Stokes and linearized Euler equations to locate the Kirchhoff surface. The
Kirchhoff surface predictions are in excellent agreement with directly computed data.
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J-1626, and computer time has been provided by the NASA Ames Research Center
through the Center for Turbulence Research and by the Numerical Aerodynamic
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Franklin P. and Caroline M. Johnson fellowship.
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